
Learning Robust Neural Networks using Wasserstein
Adversarial GAN

Shashank Goel∗
Department of Computer Science

University of California Los Angeles
Los Angeles, CA 90095

shashankgoel@cs.ucla.edu

Parth Shah∗

Department of Computer Science
University of California Los Angeles

Los Angeles, CA 90095
parthushah8@cs.ucla.edu

Harini Suresh
Department of Computer Science

University of California Los Angeles
Los Angeles, CA 90095

sharini16@cs.ucla.edu

Abstract

Deep neural networks are highly expressive and powerful learning models that
achieve close to human-level performance on many different tasks. However,
previous studies have shown that they learn relatively discontinuous functions
and are uninterpretable to a significant extent. Many studies have focused on
a better understanding of adversarial examples, specially designed inputs to a
model perceptually similar to a given input but with a different classification label.
Furthermore, algorithms that generate these adversarial examples rely on Lp-norms
as a measure for the perceptual similarity between the input and the adversary.
However, some recent studies have shown that Lp-norm is an unnecessary and
inadequate measure to indicate the perceptual distance between two images. In this
work, we propose a novel method of generating complex adversarial examples that
may have large Lp-norms but are perceptually more similar relative to the benign
input and establish state-of-the-art results in robustness.

1 Introduction

In previous research paradigms (Szegedy et al. [21], Hein and Andriushchenko [9], Goodfellow et al.
[8], Madry et al. [15], Papernot et al. [16], Tramèr et al. [22], Carlini and Wagner [2]), adversarial
attack and defense mechanisms have measured the degree to which an adversarial example is
indistinguishable from its benign original using Lp-norms. For instance, as proposed in Sharif et al.
[20], L0-norm measures the number of different pixels, L2-norm measures the euclidean distance,
and Linf -norm measures the largest distance between corresponding pixels of the two images.
However, it has been implicitly assumed that Lp-norm difference is indicative of the perceptual or
visual similarity of humans. Notwithstanding, it has been shown that images can be perceptually
similar even with a higher Lp-norm difference and experimental approaches to show that Lp distance
may be inappropriate for generating adversarial examples (Sharif et al. [20], Jacobsen et al. [11]).

Formally, we will devise an estimate of the perceptual distance D between two images. One can
trivially show that Lp-norms don’t generate perfect estimates by applying standard pre-processing

∗equal contribution

Preprint. Under review.

transformations like cropping, rotation, etc. that cause the benign image to remain perceptually
similar to the transformed image but have a rather high Lp distance. It’s not trivial to check whether
two images are perceptually similar without human supervision. A potential way around this hurdle
is learning a discriminator network that outputs a perceptual similarity score for two input images.
The discriminator network training uses data augmentation techniques like rotation, recolorization,
cropping, flipping, etc. Further, we can train a generator network to fool the discriminator proposed
in Goodfellow et al. [6], and generate adversarial examples. However, a drawback of this naive
approach is that these transformations may not cover the entire space of perturbations necessary for
achieving robustness, and the generator can potentially learn an identity mapping. A novel idea of
generating adversarial examples, AdvGANs, has been proposed in Xiao et al. [26] to accommodate
these problems. The loss function consists of three different loss objectives 1) to penalize higher
norm of the noise in the generated image, 2) the min-max loss of the GAN architecture, and 3) to
penalize if the same class label is generated for the output as the initial input when passed through
a trained classifier network. The adversary generated for an input x is x + G(x), where G is
the generator network and G(x) represents the adversarial noise. The loss function uses a hinge
objective on the norm of G(x) given by Lhinge = Ex [max(0, ∥G(x)∥2−c)]. We aim to design a
network that creates adversarial examples with a high value of ∥G(x)∥2. Moreover, we modify the
network architecture to accommodate for variations in output adversary by passing an additional
input sampled from a normal distribution. Further, we use the Wasserstein distance as a critic to
generate perceptually similar adversaries. By using these techniques, we can generate multiple
adversaries with a possibly higher Lp norm distance from the single input image that our classifier
can use to learn a robust parameter space.

We plan to evaluate our attack mechanism by comparing the accuracy scores of the generated
adversarial examples using PGD, AdvGANS and our WAGAN model. Furthermore, we calculate the
improved accuracy of the model trained on data augmented using the different attack mechanisms
and show it to be more accurate and robust. We use the MNIST (Deng [5]) data set while performing
all of our experiments and plan to develop models using Pytorch (Paszke et al. [18]). We compare
our attack mechanisms to other attack mechanisms that find adversarial examples having smaller
Lp distance by comparing the model accuracy when trained on data augmented by various attack
mechanisms. Also, we will show that model trained using data augmented from our attack mechanism
to be more generalizable than other models over randomly generated adversarial examples using
different attack mechanisms.

2 Related Work

Adversarial Examples Recently, substantial effort has gone towards generating adversarial examples
for a target model, which are specially crafted inputs that are perceptually similar to original inputs
from real datasets but are classified incorrectly. There has been a number of papers studying threat
model based on Lp distance to identify perceptually similar inputs, ranging from improved attacks,
heuristic and certified defenses, and verifiers. Some popular mechanisms to generate adversarial
examples include the Fast gradient sign method (FGSM) by Goodfellow et al. [7], which applies a
first-order approximation of the loss function to construct adversarial samples. Optimization-based
methods (Opt) have also been proposed to optimize adversarial perturbation for targeted attacks while
satisfying certain constraints by Carlini and Wagner [2] and Liu et al. [12]. Also, many commonly
used methods for generating adversarial examples use a form of projected gradient descent over
the region of allowable perturbations, originally referred to as the Basic Iterative Method proposed
by Madry et al. [14]. Parallelly, new defense mechanisms have also developed like distillation by
Papernot et al. [17] and one of the most practically successful one by Madry et al. [13] which uses
the adversarial examples in adversarial training.

Neural Networks to generate adversarial examples Also, neural networks have been applied to
generate adversarial perturbation; some examples include Baluja and Fischer [1] which combines the
re-ranking loss and an L2 norm loss, encouraging the generated adversarial instance to be close to
the original one in terms of L2 distance. Although the most interesting is the one using Generative
adversarial networks(GAN) (Goodfellow et al. [6]) known as AdvGAN [Xiao et al. [26]], where
they model a generator that crafts those adversarial examples and a discriminator that encourages
the generator to make perceptually similar inputs and additional loss functions are present which

2

encourages the generator to have low magnitude perturbations that fools the target model. This was
the state-of-the-art attack mechanism achieving 88.93% accuracy in the semi-Whitebox setting and
92.7% in the black-box setting on MNIST challenge (Madry et al. [13]) and won the top position.

Wasserstein distance threat model To measure perceptual similarity between two images, most
prior work has used the Lp distance metric in attacks that craft adversarial examples, usually using
L0, L2 or Linf to minimize the change in the original image. But recent work by Sharif et al. [20]
suggests that the nearness according to Lp-norm is unnecessary as well as insufficient for perceptual
similarity. This motivated us to look into other distance metrics like the Wasserstein distance, which is
a better way to represent the perceptual distance between two images. Wasserstein distances measure
the cost of moving pixel mass, which naturally cover “standard” image manipulations such as scaling,
rotation, translation, and distortion. Wong et al. [25] were the first to introduce a new Wasserstein
distance-based threat model for adversarial attacks. Our goal through this paper is to extend the
previous state-of-the-art Adversarial GAN attack framework over the Wasserstein distance threat
model, which proves to be a better adversary, and fine-tuning the target model on it results in more
robust models.

3 Preliminaries

3.1 PGD based attack

The most prevalent method for constructing adversarial instances is using a variation of projected
gradient descent (Madry et al. [14]). Let X be the set of instances, and Y be the set of labels. The
projection of an instance x ∈ X onto a set S ⊆ X is defined as

proj
S

(x) = argmin
p∈S

∥x− p∥22

representing a point inside the set S, closest to the given point x in the Euclidean space. Let B(x, δ)
denote a ball of radius δ centered around the point x in the instance space X , reflecting the adversary’s
threat model, defined by

B(x, δ) = {p ∈ X : ∥x− p∥22 ≤ δ}

The projection of an instance x ∈ X onto the ball B(x, δ) can be expressed as

proj
B(x,δ)

(x) = argmin
p∈B(x,δ)

∥x− p∥22

Iterative Projected Gradient Descent: Given an input example (x, y) ∈ X × Y , let x(t)
adv be the

generated adversarial example at time step t. Further, let α be the step size, fθ be the target model,
and L be the loss function. Then, the projected gradient descent algorithm consists of the following
iteration at time step t+ 1,

x
(t+1)
adv = proj

B(x,δ)

[
x
(t)
adv + argmax

∥w∥<α

wT

(
∂

∂x
(t)
adv

L
(
fθ

(
x
(t)
adv

)
, y
))]

(1)

where x
(0)
adv is initialized randomly such that x(0)

adv ∈ B(x, δ). The gradient step in the equation forces
the adversary to move in the direction of steepest ascent of the loss L of the target model while still
staying in the ball of radius δ around the input x at every iteration.

3.2 Wasserstein based attack

The Wasserstein distance (Villani [23]) is defined as the optimal cost of the standard transport
problem in the fractional space that can be interpreted in the context of distributions as the most
inexpensive way to change one distribution into another by shifting the probability mass using a
linear transformation. When applied to images, it can be thought of as the cost of moving pixel mass

3

from one pixel to another pixel such that the shifting cost per unit mass increases with the distance
between the source and the destination pixels.

Formally, let x, y ∈ Rn
+ be two non-negative vectors such that ∥x∥1= ∥y∥1= 1. This condition on

the norm of the vectors is not strict in the theoretical sense. It is used for stability purposes and
maintains a distance scale for comparison. Let d(i, j) be some given distance function between
the elements xi and yj . Further, let C ∈ Rn×n

+ be a given non-negative cost matrix such that Cij

represents the cost of moving a unit mass from xi to yj . In a typical scenario, Ci′j′ > Cij if and
only if d(i′, j′) > d(i, j) (e.g. Cij = d(i, j)). Then, the Wasserstein distance dW between x and y is
defined as

dW(x, y) = min
Π∈Rn×n

+

n∑
i=1

n∑
j=1

ΠijCij

subject to ∀i ∈ [n],

n∑
j=1

Πij = xi and ∀j ∈ [n],

n∑
i=1

Πij = yj

(2)

The minimization is carried over the transport policy plan Π, where Πij denotes the amount of mass
that moves from xi to yj . Further, we can define the Wasserstein ball (Wong et al. [24]) with radius δ
as

BW(x, δ) = {x+∆ : dW(x, x+∆) ≤ δ}

Projected Gradient Descent (Equation 1) using the Wasserstein ball is not-trivial because calculating
the Wasserstein distance itself requires us to solve an optimization problem.

Note: In the conventional literature, the p-Wasserstein distance formulation uses the cost matrix C
such that for every i, j ∈ [n], we have

Cij =
(
(ix − jx)

2
+ (iy − jy)

2
)p/2

where (ix, iy) (respectively (jx, jy)) is the pixel coordinate in the original image corresponding to
the index i (respectively j) in the flattened vector of that image.

The following section describes an efficient tractable approach to estimate the Wasserstein distance.

3.3 Efficient Tractable Approximation of Wasserstein distance using Sinkhorn Iterations

Solving for the Wasserstein distance using the dual formulation makes it intractable in learning with
the adversarial GAN architecture that we use in this paper. Therefore, to employ an iterative approach
for calculating the Wasserstein distance, instead of just optimizing for the cost of moving the pixel
mass, we add an entropy term on the transport plan (Peyré and Cuturi [19]) and modify the problem
as follows

H(Π) = −
n∑

i=1

n∑
j=1

Πij (log (Πij)− 1)

dW(x, y) = min
Π∈Rn×n

+

 n∑
i=1

n∑
j=1

ΠijCij − ϵH(Π)

subject to ∀i ∈ [n],

n∑
j=1

Πij = xi and ∀j ∈ [n],

n∑
i=1

Πij = yj

(3)

Since the objective is an ϵ-strongly convex function (Peyré and Cuturi [19]), the above problem has
a unique optimal solution. The convergence of the solution of that regularized problem toward an

4

optimal solution of the original linear program has been studied with precise asymptotics (Cominetti
and San Martin [3]). We state without proof that the unique solution for the entropy regularized
formulation (3) of the original problem converges to the optimal solution with maximal entropy
within the set of all optimal solutions of the actual problem (2).

Introducing two dual vectors α, β ∈ Rn, corresponding to each set of marginal constraints, the
Lagrangian L(α, β,Π) of the above optimization problem can be expressed as

C(Π) =

n∑
i=1

n∑
j=1

ΠijCij

H(Π) = −
n∑

i=1

n∑
j=1

Πij (log (Πij)− 1)

L(α, β,Π) = C(Π)− ϵH(Π)−
n∑

i=1

αi

 n∑
j=1

Πij − xi

− n∑
j=1

βj

(n∑
i=1

Πij − yj

)
(4)

Using the first order condition, at optimality, we have

∂L(α, β,Π)

∂Πij
= Cij + ϵ log Π∗

ij − α∗
i − β∗

j = 0

Therefore, we have

Π∗
ij = exp (α∗

i /ϵ) exp (−Cij/ϵ) exp
(
β∗
j /ϵ
)

(5)

Hence, the unique solution to the regularized formulation can be expressed, for every i, j ∈ [n], as

Π∗
ij = uiKijvj

subject to Kij = exp (−Cij/ϵ) and ui, vj ≥ 0

(6)

Further, the optimal transport plan Π∗ must satisfy the following non-linear equations, which corre-
spond to the mass conservation constraints,

n∑
j=1

Π∗
ij = ui

n∑
j=1

Kijvj = xi ,∀i ∈ [n]

n∑
i=1

Π∗
ij = vj

n∑
i=1

uiKij = yj ,∀j ∈ [n]

(7)

The set of equations (7) can be solved iteratively using the Sinkhorn’s algorithm (Cuturi [4]) with the
following set of update equations

u
(t+1)
i =

xi
n∑

j=1

Kijv
(t)
j

,∀i ∈ [n]

v
(t+1)
i =

yj
n∑

i=1

u
(t+1)
i Kij

,∀j ∈ [n]
(8)

5

initialized with an arbitrary positive values v0j = 1, ∀j ∈ [n]. Further, the optimal transport plan Π∗

and the optimal cost i.e., the Wasserstein distance dW(x, y), can be calculated using the following set
of equations,

Π∗
ij = uT

i Kijv
T
j

dW(x, y) = min
Π∈Rn×n

+

n∑
i=1

n∑
j=1

Π∗
ijCij

(9)

It may be useful to note that a different initialization of vj might lead to a different solution for ui and
vj , since if ui, vj are solutions to the set of equations 7 then so are λui, vj/λ for any λ > 0. It turns
out, however, that these iterations converge and result in the same optimal policy (Wong et al. [24])
defined in 9. An efficient vectorized implementation of the above iterative algorithm is given below:

Efficient Approximation for Wasserstein Distance

Input: Feature vector X ∈ Rn×d
+ , Feature Vector Y ∈ Rn×d

+ , Cost Matrix C ∈ Rd×d

Algorithm parameters: Entropy factor ϵ ∈ (0,∞], number of iterations T

Define dual variables u, v ∈ Rn
+

Define kernel matrix K ∈ Rd×d
+

Initialize delta δ = 1e− 8

Initialize dual variable v = 1n×d

Initialize kernel matrix: K = exp(−C/ϵ)

foreach t: 1 to T do
u← x/

(
vKT + δ

)
v ← y/(Ku+ δ)

end foreach

Π∗ ← diag(u)Kdiag(v)
dW = Π∗ ⊙ C

return dW

4 WAGAN - Wasserstein Adversarial GAN

4.1 Problem Definition

Let D be a dataset comprising of m datapoints, (xi, yi) being the ith instance of the training set,
where xi ∈ X ⊆ Rn generated according to an unknown distribution xi ∼ Pdata and yi ∈ Y the
corresponding true class labels and f : X → Y as a classifier learned using the training set from
D. Given any instance (x, y) predicted correctly by the learned classifier f(x) = y, our goal is to
generate an adversarial example xA s.t. dW(x, xA) ≤ ϵ so that it is perceptually very similar but it’s
predicted label is not the same as the true label of the original, f(x) = y ̸= f(xA).

4.2 WAGAN Framework

Figure 1 illustrates the overall architecture of WAGAN Framework, which consists four major
components: a Generator G, a Discriminator D, a Wasserstein ApproximatorW and the target neural
network f . Given an instance x it passes through the generator G which generates a perturbation
G(x) which gives us the corresponding adversary xA = x + G(x). Then x and xA are sent to the
discriminator D whose role is to distinguish the generated data xA and the original instance x and
encourage the generator to create indistinguishable data.

6

Figure 1: WAGAN Architecture

To fulfill the the goal of fooling the target model we pass xA to the target model f to calculate it’s
loss which represents the opposite of the distance between the predicted class and the ground truth
class. Also we want our adversary to be close to the original instance and so we pass x and xA to
the wasserstein approximatorW to calculate a loss which represents how close they are as per the
algorithm described above 9.

The final loss function used to train the generator G and the discriminator D can be broken down into
four components which encourages different aspects of our adversarial model.

Adversarial Loss:

Lgan = Ex logD(x) + Ex log(1−D(x+ G(x)))

The discriminator D aims to maximize this loss which in turn encourages it to give higher score to
original instances x and lower scores to perturbed data x+ G(x) = xA. Whereas the generator G
aims to minimize this loss which encourages it to generate perturbed data that is indistinguishable
from the original instance.

Untargeted Attack Loss:

Lf
adv = −Exℓf (x+ G(x), y)

This loss encourages the generator G to generated perturbed data x+ G(x) = xA that is classified as
the true label y with low probability and therefore fooling the model under attack f .

Hinge Loss:

Lhinge = Ex max (0, ∥G(x)∥2−c)

As previous work focused on the Lp-norm distance metric to calculate closeness of two inputs we
include the hinge loss for experimental purposes. Depending on whether it directly or inversely
affects the final objective it produces adversaries which have low or high perturbation. Our motivation
was to originally create adversaries which are perceptually very similar to the original instance(low
wasserstein distance) but are very far apart in terms of Lp distance which can be realized when the
final objective inversely depends on Lhinge.

Wasserstein Loss:

Lwas = Ex max(0, dW(x, x+ G(x))− c)

This loss function encourages the generator to generate adversaries which have lower wasserstein
distance from the original image it is approximated by algorithm 9 which makes the adversary

7

perceptually similar to the original instance. Note that c here denotes a user-specified bound which
stabilizes GAN’s training as shown in Isola et al. [10].

Finally our full objective can be expressed as,

L = Lf
adv + αLgan + βLhinge + γLwas

where α, β and γ control the relative importance of each objective. The generator G and discriminator
D model are obtained by solving the minmax game argminD maxG L. Once G is trained on the
training data and target model, it can produce xA = x+ G(x) for any given instance x.

We trained three variations of this adversarial model, WAGAN, WAGAN β− and WAGAN β+ where
β = 0, β < 0, and β > 0 respectively and compared the robustness of model trained over adversarial
examples generated by each of these models in the following section.

5 Experimental Results

In this section, we generate adversarial examples from all the six different attack mechanisms
discussed above - baseline attack mechanism, Projected Gradient Descent (PGD) - a popular baseline
technique for generating adversaries, AdvGAN - the state-of-the-art model in the literature of
adversarial examples generation, WAGAN, WAGAN β− and WAGAN β+ and compare them. Table
1 summarizes the accuracy scores of the original target model against adversarial examples generated
by the six different settings and Table 2 summarizes the robustness of the target model additionally
trained on the six corresponding set of adversarial training examples. The experiments can be
replicated on a single GPU.

Implementation Details: All our experiments were performed on the popular MNIST (Deng [5])
dataset having 32 × 32 images of handwritten digits. It has 60,000 training images and 10,000 test
images. For the target model, we kept the batch size as 256 and trained it for 20 epochs with a
0.001 learning rate and for the next 30 epochs with a 0.0001 learning rate. For the PGD method, we
use 200 iterations of gradient ascent and a maximum difference of 0.003 between the input and the
projected adversarial image. For the AdvGAN model we kept the value of α = 10 and β = 1 (as
used in previous work) and for each of the variation of WAGAN model we kept the value of α = 10,
β = −1, 0,+1 for WAGAN β−, WAGAN and WAGAN β+, and γ = 1. For all the adversarial
models, AdvGAN, WAGAN β−, WAGAN and WAGAN β+, we kept the batch size as 128 and
trained for a total of 60 epochs with a learning rate of 0.001 for the first 50 epochs and 0.0001 for the
last 10.

Evaluating Goodness of Adversarial Examples: In this experiment, we use the PGD method, the
AdvGAN model and the WAGAN model with three different β settings for generating the adversarial
examples. The Generative models are trained on the MNIST train dataset. We report the train and test
accuracies of the target model trained using the original dataset on the different classes of adversaries.
The results of the experiments are summarized in Table 1. Adversaries generated by WAGAN β−
gave the worst accuracies on the target model, also note that the adversary generated by AdvGAN are
not as good for the unseen testing data, showing weak generalizability.

Dataset Train Test
Original 99.96 99.30
PGD. 19.87 20.35
AdvGAN 0.67 17.39
WAGAN 0.53 0.58
WAGAN β− 0.32 0.44
WAGAN β+ 0.69 0.64

Table 1: Train and Test Accuracies of the trained target model on different classes of adversaries

Evaluating Robustness of Adversarial fine-tuned Target Model: In this experiment, the target
model is fine-tuned with different classes of adversarial examples generated in the previous experiment.
We report the test accuracies of the fine-tuned target models on the original dataset and the different
classes of adversaries. The results of the experiments are summarized in Table 2. We have highlighted
the fine-tuned models proving to the most robust for a particular adversarial testing set, leaving aside

8

the fine-tuned model trained on the adversarial training set coming from the same set of adversarial
examples. Each row in the table represents the model fine-tuned using the respective adversarial
training examples and each column represents the accuracies of each of those fine-tuned models on the
respective adversarial testing examples. Here the WAGAN β− fine-tuned model is emperically most
robust in comparison to the other models and the adverserial test examples generated by WAGAN are
the most difficult to predict correctly, very close to the adversaries generated by WAGAN β−.

Model/Dataset Base PGD AdvGAN WAGAN WAGAN β− WAGAN β+ Avg
Base 99.30 20.35 17.39 0.58 0.44 0.64 23.12
PGD 90.42 99.70 88.47 86.01 89.65 92.77 91.17
AdvGAN 91.67 93.87 99.02 88.59 91.33 96.50 93.50
WAGAN 95.22 94.69 92.22 98.24 95.23 94.77 95.06
WAGAN β− 96.62 98.35 96.95 96.72 98.27 97.32 97.37
WAGAN β+ 95.30 97.20 96.80 92.40 93.48 98.91 95.68
Avg 94.76 84.03 81.81 77.09 78.07 80.15

Table 2: Test accuracy of fine-tuned target model on different classes of adversaries

6 Conclusion

This paper proposed the Wasserstein Adversarial GAN (WAGAN) attacking framework to generate
adversarial examples using generative adversarial networks (GAN) based architecture coupled with
the recently introduced Wasserstein distance threat model. Once trained, the generator from the
WAGAN model can be used independently to generate adversarial examples for any given instance.
The generated adversarial examples are presumably perceptually similar to the original sample but
misclassified by the target model. Furthermore, we showed that adversarial examples generated by
WAGAN have a higher attack success rate than those generated by other competing methods, which
can be seen in Table 1. We observe that its attack success rate generalizes better to new unseen
instances from the testing set than a contemporary attacking framework, AdvGAN. Experiments
suggest that amongst the various paradigms of WAGAN, the β− attacking framework proves to be
the most challenging adversary geerator. This analysis makes the WAGAN attacking framework a
promising candidate for testing new defense mechanisms. In addition, through Table 2 we empirically
show that models robust against WAGAN β− adversarial examples are robust against other attacking
frameworks, which leads us to the hypothesis that a trivial defense mechanism of additionally training
the target model on adversarial training examples generated by WAGAN β− will defend well against
another attack mechanism. However, this claim needs more empirical evidence(by testing it against
other attack mechanisms) and theoretical reasoning, both in the Lp-norm and Wasserstein distance
paradigm, which can be worked upon in the future. Additionally, the WAGAN framework is easily
mutable to any other distance metric. One exciting application could include another neural model
that captures the perceptual similarity between the newly generated and the original instance. One
can also create a better and more efficient Wasserstein approximator, keeping in mind that its gradient
still needs to be tractable for the backpropagation step to work.

References
[1] Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial transformation networks. In

Proceedings of AAAI-2018, 2018. URL http://www.esprockets.com/papers/aaai2018.
pdf.

[2] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
2017 IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

[3] Roberto Cominetti and Jaime San Martin. Asymptotic analysis of the exponential penalty
trajectory in linear programming. Mathematical Programming, 67:169–187, 10 1994. doi:
10.1007/BF01582220.

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances.
arXiv: Machine Learning, 2013.

9

http://www.esprockets.com/papers/aaai2018.pdf
http://www.esprockets.com/papers/aaai2018.pdf

[5] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[7] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http:
//arxiv.org/abs/1412.6572.

[8] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http:
//arxiv.org/abs/1412.6572.

[9] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 2263–2273, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5967–5976, 2017. doi: 10.1109/CVPR.2017.632.

[11] Jörn-Henrik Jacobsen, Jens Behrmann, Nicholas Carlini, Florian Tramèr, and Nicolas Paper-
not. Exploiting excessive invariance caused by norm-bounded adversarial robustness. ArXiv,
abs/1903.10484, 2019.

[12] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. In Proceedings of 5th International Conference on Learning
Representations, 2017.

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=rJzIBfZAb.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ArXiv, abs/1706.06083, 2018.

[15] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

[16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as
a defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 582–597, 2016. doi: 10.1109/SP.2016.41.

[17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and
Ananthram Swami. Practical black-box attacks against machine learning, 2017.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

10

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[19] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Found. Trends Mach. Learn.,
11:355–607, 2019.

[20] Mahmood Sharif, Lujo Bauer, and Michael Reiter. On the suitability of lp-norms for creating
and preventing adversarial examples. pages 1686–16868, 06 2018. doi: 10.1109/CVPRW.2018.
00211.

[21] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199.

[22] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
McDaniel. Ensemble adversarial training: Attacks and defenses. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=rkZvSe-RZ.

[23] Cédric Villani. The Wasserstein distances, pages 93–111. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-540-71050-9. doi: 10.1007/978-3-540-71050-9_6. URL
https://doi.org/10.1007/978-3-540-71050-9_6.

[24] Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. In ICML, 2019.

[25] Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations, 2020.

[26] Chaowei Xiao, Bo Li, Jun yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating
adversarial examples with adversarial networks. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pages 3905–3911. International
Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/543.
URL https://doi.org/10.24963/ijcai.2018/543.

11

http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=rkZvSe-RZ
https://doi.org/10.1007/978-3-540-71050-9_6
https://doi.org/10.24963/ijcai.2018/543

	Introduction
	Related Work
	Preliminaries
	PGD based attack
	Wasserstein based attack
	Efficient Tractable Approximation of Wasserstein distance using Sinkhorn Iterations

	WAGAN - Wasserstein Adversarial GAN
	Problem Definition
	WAGAN Framework

	Experimental Results
	Conclusion

